# **ACTFLEX SUPERBOND 007**

# **Actech Protective Coatings**

Chemwatch: 5689-14 Version No: 2.1

Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: 11/07/2024 Print Date: 23/07/2024 L.GHS.AUS.EN.E

# SECTION 1 Identification of the substance / mixture and of the company / undertaking

| Product Identifier            |                                                                       |  |
|-------------------------------|-----------------------------------------------------------------------|--|
| Product name                  | ACTFLEX SUPERBOND 007                                                 |  |
| Chemical Name                 | Not Applicable                                                        |  |
| Synonyms                      | Not Available                                                         |  |
| Proper shipping name          | FLAMMABLE LIQUID, N.O.S. (contains n-butyl acetate and ethyl acetate) |  |
| Chemical formula              | Not Applicable                                                        |  |
| Other means of identification | Not Available                                                         |  |
|                               |                                                                       |  |

## Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Primer.

#### Details of the manufacturer or supplier of the safety data sheet

| Registered company name | Actech Protective Coatings                         |  |
|-------------------------|----------------------------------------------------|--|
| Address                 | 22/872 Canterbury Rd. Roselands NSW 2196 Australia |  |
| Telephone               | +61 2 8021 3517                                    |  |
| Fax                     | Not Available                                      |  |
| Website                 | www.actechprotectivecoatings.com.au                |  |
| Email                   | admin@actechpc.com.au                              |  |

#### **Emergency telephone number**

| Association / Organisation        | Actech Protective Coatings                                 |  |  |
|-----------------------------------|------------------------------------------------------------|--|--|
| Emergency telephone numbers       | 0424 424178 (Mon-Fri 7.30am to 5pm; Sat 8.30am to 12.30pm) |  |  |
| Other emergency telephone numbers | Not Available                                              |  |  |

# **SECTION 2 Hazards identification**

# Classification of the substance or mixture

# HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

# Chemwatch Hazard Ratings

|              |   | Min | Max |                         |
|--------------|---|-----|-----|-------------------------|
| Flammability | 3 |     |     |                         |
| Toxicity     | 1 |     |     | 0 = Minimum             |
| Body Contact | 2 |     |     | 1 = Low                 |
| Reactivity   | 1 |     |     | 2 = Moderate            |
| Chronic      | 2 |     |     | 3 = High<br>4 = Extreme |

| Poisons Schedule              | S6                                                                                                                                                                                                                                                                                               |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classification <sup>[1]</sup> | Flammable Liquids Category 2, Aspiration Hazard Category 1, Serious Eye Damage/Eye Irritation Category 2A, Sensitisation (Respiratory) Category 1, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Specific Target Organ Toxicity - Repeated Exposure Category 2 |
| Legend:                       | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI                                                                                                                                                              |

# Label elements

Hazard pictogram(s)







Signal word Danger

# Hazard statement(s)

| H225 | Highly flammable liquid and vapour.           |
|------|-----------------------------------------------|
| H304 | May be fatal if swallowed and enters airways. |

Chemwatch: 5689-14 Page 2 of 17 Version No: 2.1

## **ACTFLEX SUPERBOND 007**

Issue Date: 11/07/2024 Print Date: 23/07/2024

| H319   | Causes serious eye irritation.                                             |  |
|--------|----------------------------------------------------------------------------|--|
| H334   | May cause allergy or asthma symptoms or breathing difficulties if inhaled. |  |
| H336   | May cause drowsiness or dizziness.                                         |  |
| H373   | May cause damage to organs through prolonged or repeated exposure.         |  |
| AUH066 | Repeated exposure may cause skin dryness and cracking.                     |  |

# Precautionary statement(s) Prevention

| Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. |
|------------------------------------------------------------------------------------------------|
| Do not breathe mist/vapours/spray.                                                             |
| Use only outdoors or in a well-ventilated area.                                                |
| [In case of inadequate ventilation] wear respiratory protection.                               |
| Ground and bond container and receiving equipment.                                             |
| Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.              |
| Use non-sparking tools.                                                                        |
| Take action to prevent static discharges.                                                      |
| Wear protective gloves, protective clothing, eye protection and face protection.               |
| Wash all exposed external body areas thoroughly after handling.                                |
|                                                                                                |

# Precautionary statement(s) Response

| P301+P310      | IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.                                                     |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| P331           | Do NOT induce vomiting.                                                                                                          |  |  |
| P304+P340      | IF INHALED: Remove person to fresh air and keep comfortable for breathing.                                                       |  |  |
| P342+P311      | If experiencing respiratory symptoms: Call a POISON CENTER/doctor/physician/first aider.                                         |  |  |
| P370+P378      | In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.                                                |  |  |
| P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |  |  |
| P312           | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.                                                            |  |  |
| P337+P313      | If eye irritation persists: Get medical advice/attention.                                                                        |  |  |
| P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].                         |  |  |

#### Precautionary statement(s) Storage

| P403+P235 | Store in a well-ventilated place. Keep cool. |  |
|-----------|----------------------------------------------|--|
| P405      | Store locked up.                             |  |

# Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

# **SECTION 3 Composition / information on ingredients**

## Substances

See section below for composition of Mixtures

#### Mixtures

| CAS No        | %[weight]                                                                                                                                                                                   | Name                                                    |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 141-78-6      | 40-55                                                                                                                                                                                       | ethyl acetate                                           |
| Not Available | 25-35                                                                                                                                                                                       | polyurethane prepolymer                                 |
| 123-86-4      | 5-15                                                                                                                                                                                        | n-butyl acetate                                         |
| 108-65-6      | 1-5                                                                                                                                                                                         | propylene glycol monomethyl ether acetate, alpha-isomer |
| 4083-64-1     | 0.5-1                                                                                                                                                                                       | p-toluenesulfonyl isocyanate                            |
| 4151-51-3     | 0.5-1                                                                                                                                                                                       | 4-isocyanatophenol phosphorothioate (3:1)               |
| Legend:       | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available |                                                         |

# **SECTION 4 First aid measures**

| Description of first aid measures |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Eye Contact                       | If this product comes in contact with the eyes:  Wash out immediately with fresh running water.  Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.  Seek medical attention without delay; if pain persists or recurs seek medical attention.  Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. |  |  |
| Skin Contact                      | If skin contact occurs:  Immediately remove all contaminated clothing, including footwear.  Flush skin and hair with running water (and soap if available).  Seek medical attention in event of irritation.                                                                                                                                                                                                                                         |  |  |
| Inhalation                        | <ul> <li>If fumes or combustion products are inhaled remove from contaminated area.</li> <li>Lay patient down. Keep warm and rested.</li> <li>Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.</li> </ul>                                                                                                                                                       |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

Chemwatch: 5689-14 Page 3 of 17 Issue Date: 11/07/2024 Version No: 2.1 Print Date: 23/07/2024

#### **ACTFLEX SUPERBOND 007**

 Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be administered as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially symptomatic. A physician should be consulted. If swallowed do NOT induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration Observe the patient carefully. Ingestion Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus

# Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. for simple esters:

#### BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

#### ADVANCED TREATMENT

- · Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- ▶ Positive-pressure ventilation using a bag-valve mask might be of use
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
   Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam
- ▶ Proparacaine hydrochloride should be used to assist eye irrigation.

# **EMERGENCY DEPARTMENT**

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consult a toxicologist as necessary

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For sub-chronic and chronic exposures to isocyanates:

- ▶ This material may be a potent pulmonary sensitiser which causes bronchospasm even in patients without prior airway hyperreactivity.
- Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts
- Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure.
- Pulmonary symptoms include cough, burning, substernal pain and dyspnoea.
- Some cross-sensitivity occurs between different isocyanates
- Noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line.
- Treatment for asthma includes inhaled sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids.
- Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion.
- Mydriatics, systemic analgesics and topical antibiotics (Sulamyd) may be used for corneal abrasions.
- There is no effective therapy for sensitised workers.

[Ellenhorn and Barceloux; Medical Toxicology]

NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependant on the concentration and duration of exposure. They induce smooth muscle contraction which leads to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity. [Karol & Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992]

Personnel who work with isocyanates, isocyanate prepolymers or polyisocyanates should have a pre-placement medical examination and periodic examinations thereafter, including a pulmonary function test. Anyone with a medical history of chronic respiratory disease, asthmatic or bronchial attacks, indications of allergic responses, recurrent eczema or sensitisation conditions of the skin should not handle or work with isocyanates. Anyone who develops chronic respiratory distress when working with isocyanates should be removed from exposure and examined by a physician. Further exposure must be avoided if a sensitivity to isocyanates or polyisocyanates has developed.

## **SECTION 5 Firefighting measures**

#### Extinguishing media

- Alcohol stable foam.
- Dry chemical powder
- BCF (where regulations permit).
- Carbon dioxide
- Water spray or fog Large fires only.

#### Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

#### Advice for firefighters

Fire Fighting

- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.

Chemwatch: 5689-14 Page 4 of 17 Issue Date: 11/07/2024 Version No: 2.1 Print Date: 23/07/2024

#### **ACTFLEX SUPERBOND 007**

Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Fight fire from a safe distance, with adequate cover. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control the fire and cool adjacent area. Avoid spraying water onto liquid pools. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Liquid and vapour are highly flammable. ▶ Severe fire hazard when exposed to heat, flame and/or oxidisers. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) isocyanates and minor amounts of Fire/Explosion Hazard hydrogen cyanide nitrogen oxides (NOx) phosphorus oxides (POx) sulfur oxides (SOx) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point of rupture. Release of toxic and/or flammable isocyanate vapours may then occur

#### **SECTION 6 Accidental release measures**

**HAZCHEM** 

#### Personal precautions, protective equipment and emergency procedures

SORBENT

**TYPE** 

Burns with acrid black smoke.

See section 8

#### **Environmental precautions**

See section 12

#### Methods and material for containment and cleaning up

|              | F Remove all ignition sources.                                                                        |
|--------------|-------------------------------------------------------------------------------------------------------|
|              | ▶ Clean up all spills immediately.                                                                    |
|              | <ul> <li>Avoid breathing vapours and contact with skin and eyes.</li> </ul>                           |
| Minor Spills | <ul> <li>Control personal contact with the substance, by using protective equipment.</li> </ul>       |
|              | <ul> <li>Contain and absorb small quantities with vermiculite or other absorbent material.</li> </ul> |
|              | ▶ Wipe up.                                                                                            |
|              | Collect residues in a flammable waste container.                                                      |
|              |                                                                                                       |

COLLECTION

LIMITATIONS

#### **Major Spills**

Chemical Class: ester and ethers For release onto land: recommended sorbents listed in order of priority.

APPLICATION

| · · · · =                          |   |        |            |                 |
|------------------------------------|---|--------|------------|-----------------|
| LAND SPILL - SMALL                 |   |        |            |                 |
| cross-linked polymer - particulate | 1 | shovel | shovel     | R, W, SS        |
| cross-linked polymer - pillow      | 1 | throw  | pitchfork  | R, DGC, RT      |
| sorbent clay - particulate         | 2 | shovel | shovel     | R,I, P          |
| wood fiber - particulate           | 3 | shovel | shovel     | R, W, P, DGC    |
| wood fiber - pillow                | 3 | throw  | pitchfork  | R, P, DGC, RT   |
| treated wood fiber - pillow        | 3 | throw  | pitchfork  | DGC, RT         |
| LAND SPILL - MEDIUM                |   |        |            |                 |
| cross-linked polymer - particulate | 1 | blower | skiploader | R,W, SS         |
| cross-linked polymer - pillow      | 2 | throw  | skiploader | R, DGC, RT      |
| sorbent clay - particulate         | 3 | blower | skiploader | R, I, P         |
| polypropylene - particulate        | 3 | blower | skiploader | W, SS, DGC      |
| expanded mineral - particulate     | 4 | blower | skiploader | R, I, W, P, DGC |
| wood fiber - particulate           | 4 | blower | skiploader | R, W, P, DGC    |

#### Legend

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

Liquid Isocyanates and high isocyanate vapour concentrations will penetrate seals on self contained breathing apparatus - SCBA should be used inside encapsulating suit where this exposure may occur.

For isocyanate spills of less than 40 litres (2 m2):

- Evacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible.
- Notify supervision and others as necessary

Chemwatch: 5689-14 Page 5 of 17 Issue Date: 11/07/2024 Version No. 2.1 Print Date: 23/07/2024

#### **ACTFLEX SUPERBOND 007**

- Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable boots)
- Control source of leakage (where applicable).
- ▶ Dike the spill to prevent spreading and to contain additions of decontaminating solution.
- Prevent the material from entering drains.
- Estimate spill pool volume or area.
- Absorb and decontaminate. Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent. Add neutraliser (for suitable formulations: see below) to the adsorbent materials (equal to that of estimated spill pool volume). Intensify contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes
- ▶ Shovel absorbent/decontaminant solution mixture into a steel drum.
- Decontaminate surface. Pour an equal amount of neutraliser solution over contaminated surface. Scrub area with a stiff bristle brush, using moderate pressure. - Completely cover decontaminant with vermiculite or other similar absorbent. - After 5 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above.
- Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontaminate procedure immediately above
- Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove waste materials for incineration
- Decontaminate and remove personal protective equipment.
- Return to normal operation.
- Conduct accident investigation and consider measures to prevent reoccurrence.

#### Decontamination:

Treat isocvanate spills with sufficient amounts of isocvanate decontaminant preparation ("neutralising fluid"), Isocvanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/ preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone. Typically, such a preparation may consist of:

Sawdust: 20 parts by weight Kieselguhr 40 parts by weight plus a mixture of {ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90% v/v}

Let stand for 24 hours

Three commonly used neutralising fluids each exhibit advantages in different situations.

#### Formulation A

liquid surfactant 0.2-2% sodium carbonate 5-10%

water to 100%

#### Formulation B

liquid surfactant 0.2-2% concentrated ammonia 3-8% water to 100%

#### Formulation C

ethanol, isopropanol or butanol 50% concentrated ammonia 5% water to 100%

After application of any of these formulae, let stand for 24 hours.

Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution.

- Avoid contamination with water, alkalies and detergent solutions.
- Material reacts with water and generates gas, pressurises containers with even drum rupture resulting.
- DO NOT reseal container if contamination is suspected.
- Open all containers with care.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
   Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse /absorb vapour.
- Contain spill with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment.
- Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

# **SECTION 7 Handling and storage**

#### Precautions for safe handling

#### Safe handling

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.

# Contains low boiling substance:

Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.

- Check for bulging containers.
- ▶ Always release caps or seals slowly to ensure slow dissipation of vapours
- DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights, heat or ignition sources.
- When handling, DO NOT eat, drink or smoke.

Chemwatch: 5689-14 Page 6 of 17 Issue Date: 11/07/2024 Version No: 2.1 Print Date: 23/07/2024

#### **ACTFLEX SUPERBOND 007**

- Vapour may ignite on pumping or pouring due to static electricity.
- DO NOT use plastic buckets
- Earth and secure metal containers when dispensing or pouring product.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- Keep containers securely sealed.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

for commercial quantities of isocyanates:

- · Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis.
- Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken
- · Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions).
- Transfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, should be posted where necessary.
- · Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations.
- · Ideal storage temperature range is dependent on the specific polymer due to viscosity and melting point differences between the polymers. Use 25 deg C (77 deg F) to 30 deg C (86 deg F) as a guideline to most liquid isocyanates for optimum storage temperature. If some isocyanates are stored at or below a temperature of 25 deg C (77 deg F), crystallization and settling of the isocyanate may occur. Storage in a cold warehouse can cause crystals to form. These crystals can settle to the bottom of the container. If crystals do form, they can be melted easily with moderate heat. It is suggested that a container the size of a drum be warmed for 16-24 hours at sufficient temperature to melt the crystals. When the crystals are melted, the container should be agitated by rolling or stirring, until the contents are homogenous. Since heated isocyanate will generate vapors more rapidly than product stored at 25 deg C (77 deg F), be sure to follow the precautions under the Personal Protection.

#### Other information

- Store in original containers in approved flame-proof area.
- No smoking, naked lights, heat or ignition sources.
- DO NOT store in pits, depression, basement or areas where vapours may be trapped.
- Keep containers securely sealed.
- Store away from incompatible materials in a cool, dry well ventilated area. Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- ▶ Tank storage: Tanks must be specifically designed for use with this product. Bulk storage tanks should be diked (bunded). Locate tanks away from heat and other sources of ignition. Cleaning, inspection and maintenance of storage tanks is a specialist operation, which requires the implementation of strict procedures and precautions.
- ▶ Keep in a cool place. Electrostatic charges will be generated during pumping. Electrostatic discharge may cause fire. Ensure electrical continuity by bonding and grounding (earthing) all equipment to reduce the risk. The vapours in the head space of the storage vessel may lie in the flammable/explosive range and hence may be flammable.
- For containers, or container linings use mild steel, stainless steel. Examples of suitable materials are: high density polyethylene (HDPE), polypropylene (PP), and Viton (FMK), which have been specifically tested for compatibility with this product.
- For container linings, use amine-adduct cured epoxy paint.
   For seals and gaskets use: graphite, PTFE, Viton A, Viton B.
- Unsuitable material: Some synthetic materials may be unsuitable for containers or container linings depending on the material specification and intended use. Examples of materials to avoid are: natural rubber (NR), nitrile rubber (NBR), ethylene propylene rubber (EPDM), polymethyl methacrylate (PMMA), polystyrene, polyvinyl chloride (PVC), polyisobutylene. However, some may be suitable for
- Do not cut, drill, grind, weld or perform similar operations on or near containers. Containers, even those that have been emptied, can contain explosive vapours.

# Conditions for safe storage, including any incompatibilities

- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

#### Storage incompatibility

Suitable container

- reacts with water on standing to form acetic acid and n-butyl alcohol
- reacts violently with strong oxidisers and potassium tert-butoxide
- is incompatible with caustics, strong acids and nitrates
- b dissolves rubber, many plastics, resins and some coatings
- Esters react with acids to liberate heat along with alcohols and acids.
- Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products.
- ▶ Heat is also generated by the interaction of esters with caustic solutions
- Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.
- ▶ Esters may be incompatible with aliphatic amines and nitrates.
- Avoid reaction with water, alcohols and detergent solutions. Isocyanates are electrophiles, and as such they are reactive toward a variety of nucleophiles including alcohols, amines, and even water. Upon treatment with an alcohol, an isocyanate forms a urethane linkage. If a diisocyanate is treated with a compound containing two or more hydroxyl groups, such as a diol or a polyol, polymer chains are formed, which are known as polyurethanes. Reaction between a di-isocyanate and a compound containing two or more amine groups, produces long polymer chains known as polyureas.
- Isocyanates and thioisocyanates are incompatible with many classes of compounds, reacting exothermically to release toxic gases. Reactions with amines, strong bases, aldehydes, alcohols, alkali metals, ketones, mercaptans, strong oxidisers, hydrides, phenols, and peroxides can cause vigorous releases of heat. Acids and bases initiate polymerisation reactions in these materials
- Isocyanates also can react with themselves. Aliphatic di-isocyanates can form trimers, which are structurally related to cyanuric acid. Isocyanates participate in Diels-Alder reactions, functioning as dienophiles
- · Isocyanates easily form adducts with carbodiimides, isothiocyanates, ketenes, or with substrates containing activated CC or CN bonds.

#### Chemwatch: 5689-14 Version No: 2.1

#### **ACTFLEX SUPERBOND 007**

Issue Date: 11/07/2024 Print Date: 23/07/2024

- · Some isocyanates react with water to form amines and liberate carbon dioxide. This reaction may also generate large volumes of foam and heat. Foaming spaces may produce pressure in confined spaces or containers. Gas generation may pressurise drums to the point of rupture
- · Do NOT reseal container if contamination is expected
- · Open all containers with care
- · Base-catalysed reactions of isocyanates with alcohols should be carried out in inert solvents. Such reactions in the absence of solvents often occur with explosive violence
- · Isocyanates will attack and embrittle some plastics and rubbers.
- · The isocyanate anion is a pseudohalide (syn pseudohalogen) whose chemistry, resembling that of the true halogens, allows it to substitute for halogens in several classes of chemical compounds.. The behavior and chemical properties of the several pseudohalides are identical to that of the true halide ions.
- ▶ A range of exothermic decomposition energies for isocyanates is given as 20-30 kJ/mol.
- The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment.
- For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g. BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition

## SECTION 8 Exposure controls / personal protection

#### **Control parameters**

#### Occupational Exposure Limits (OEL)

#### INGREDIENT DATA

| Source                       | Ingredient                                              | Material name                 | TWA                    | STEL                    | Peak             | Notes            |
|------------------------------|---------------------------------------------------------|-------------------------------|------------------------|-------------------------|------------------|------------------|
| Australia Exposure Standards | ethyl acetate                                           | Ethyl acetate                 | 200 ppm / 720<br>mg/m3 | 1440 mg/m3 /<br>400 ppm | Not<br>Available | Not<br>Available |
| Australia Exposure Standards | n-butyl acetate                                         | n-Butyl acetate               | 150 ppm / 713<br>mg/m3 | 950 mg/m3 /<br>200 ppm  | Not<br>Available | Not<br>Available |
| Australia Exposure Standards | propylene glycol monomethyl ether acetate, alpha-isomer | 1-Methoxy-2-propanol acetate  | 50 ppm / 274<br>mg/m3  | 548 mg/m3 /<br>100 ppm  | Not<br>Available | Not<br>Available |
| Australia Exposure Standards | p-toluenesulfonyl isocyanate                            | Isocyanates, all (as-<br>NCO) | 0.02 mg/m3             | 0.07 mg/m3              | Not<br>Available | Not<br>Available |
| Australia Exposure Standards | 4-isocyanatophenol phosphorothioate (3:1)               | Isocyanates, all (as-<br>NCO) | 0.02 mg/m3             | 0.07 mg/m3              | Not<br>Available | Not<br>Available |

#### Emergency Limits

| Ingredient                                              | TEEL-1        | TEEL-2        | TEEL-3        |
|---------------------------------------------------------|---------------|---------------|---------------|
| ethyl acetate                                           | 1,200 ppm     | 1,700 ppm     | 10000** ppm   |
| n-butyl acetate                                         | Not Available | Not Available | Not Available |
| propylene glycol monomethyl ether acetate, alpha-isomer | Not Available | Not Available | Not Available |

| Ingredient                                              | Original IDLH | Revised IDLH  |
|---------------------------------------------------------|---------------|---------------|
| ethyl acetate                                           | Not Available | Not Available |
| n-butyl acetate                                         | 1,700 ppm     | Not Available |
| propylene glycol monomethyl ether acetate, alpha-isomer | Not Available | Not Available |
| p-toluenesulfonyl isocyanate                            | Not Available | Not Available |
| 4-isocyanatophenol phosphorothioate (3:1)               | Not Available | Not Available |

#### MATERIAL DATA

# **Exposure controls**

#### Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Spraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations. Local exhaust ventilation with full face air supplied breathing apparatus (hood or helmet type) is normally required. Unprotected personnel must vacate spraying area.

NOTE: Isocyanate vapours will not be adequately absorbed by organic vapour respirators. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

| Type of Contaminant:                                                                                                                                           | Air Speed:                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) |

Within each range the appropriate value depends on:

| Lower end of the range                                    | Upper end of the range           |
|-----------------------------------------------------------|----------------------------------|
| 1: Room air currents minimal or favourable to capture     | 1: Disturbing room air currents  |
| 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity |

Chemwatch: 5689-14 Page 8 of 17 Issue Date: 11/07/2024 Version No: 2.1 Print Date: 23/07/2024

#### **ACTFLEX SUPERBOND 007**

3: Intermittent, low production 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

· Adequate ventilation is typically taken to be that which limits the average concentration to no more than 25% of the LEL within the building, room or enclosure containing the dangerous substance.

· Ventilation for plant and machinery is normally considered adequate if it limits the average concentration of any dangerous substance that might potentially be present to no more than 25% of the LEL. However, an increase up to a maximum 50% LEL can be acceptable where additional safeguards are provided to prevent the formation of a hazardous explosive atmosphere. For example, gas detectors linked to emergency shutdown of the process might be used together with maintaining or increasing the exhaust ventilation on solvent evaporating ovens and gas turbine enclosures.

• Temporary exhaust ventilation systems may be provided for non-routine higher-risk activities, such as cleaning, repair or maintenance in tanks or other confined spaces or in an emergency after a release. The work procedures for such activities should be carefully considered.. The atmosphere should be continuously monitored to ensure that ventilation is adequate and the area remains safe. Where workers will enter the space, the ventilation should ensure that te concentration of the dangerous substance does not exceed 10% of the LEL (irrespective of the provision of suitable breathing apparatus)

#### Individual protection measures, such as personal protective equipment









# Eye and face protection

- Safety glasses with side shields
- Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

#### Skin protection

See Hand protection below

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

For esters:

Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact.
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

· When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term

# Hands/feet protection

- use. · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as:
- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed

moisturiser is recommended.

- ▶ Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves.
- ▶ Protective gloves and overalls should be worn as specified in the appropriate national standard.
- Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated.
- NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates

# **Body protection**

See Other protection below

#### Other protection

- ▶ PVC Apron. PVC protective suit may be required if exposure severe.
- Eyewash unit.

Version No: 2.1

#### **ACTFLEX SUPERBOND 007**

Issue Date: 11/07/2024 Print Date: 23/07/2024

- Ensure there is ready access to a safety shower.
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

#### Recommended material(s)

#### **GLOVE SELECTION INDEX**

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

**ACTFLEX SUPERBOND 007** 

| Material          | СРІ |
|-------------------|-----|
| PE/EVAL/PE        | A   |
| PVA               | A   |
| TEFLON            | В   |
| BUTYL             | С   |
| BUTYL/NEOPRENE    | С   |
| CPE               | С   |
| HYPALON           | С   |
| NATURAL RUBBER    | С   |
| NATURAL+NEOPRENE  | С   |
| NEOPRENE          | С   |
| NEOPRENE/NATURAL  | С   |
| NITRILE           | С   |
| NITRILE+PVC       | С   |
| PE                | С   |
| PVC               | С   |
| SARANEX-23        | С   |
| SARANEX-23 2-PLY  | С   |
| VITON/BUTYL       | С   |
| VITON/CHLOROBUTYL | С   |

- \* CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

**NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

\* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

#### Ansell Glove Selection

| Glove — In order of recommendation |
|------------------------------------|
| AlphaTec® 15-554                   |
| AlphaTec® 53-001                   |
| AlphaTec® 58-005                   |
| MICROFLEX® LifeStar EC™ 93-868     |
| MICROFLEX® MidKnight® XTRA 93-862  |
| AlphaTec® Solvex® 37-175           |
| BioClean™ Fusion (Sterile) S-BFAP  |
| BioClean™ N-Plus BNPS              |
| MICROFLEX® 93-732                  |
| BioClean™ Emerald BENS             |

The suggested gloves for use should be confirmed with the glove supplier.

#### Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

| Required Minimum<br>Protection Factor | Half-Face<br>Respirator | Full-Face<br>Respirator | Powered Air<br>Respirator |
|---------------------------------------|-------------------------|-------------------------|---------------------------|
| up to 10 x ES                         | AX-AUS                  | -                       | AX-PAPR-AUS /<br>Class 1  |
| up to 50 x ES                         | -                       | AX-AUS / Class<br>1     | -                         |
| up to 100 x ES                        | -                       | AX-2                    | AX-PAPR-2 ^               |

#### ^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used
- In certain circumstances, personal protection of the individual employee is necessary. Personal protective devices should be regarded as being supplementary to substitution and engineering control and should not be used in preference to them as they do nothing to eliminate the hazard.
- However, in some situations, minimising exposure to isocyanates by enclosure and ventilation is not possible, and occupational exposure standards may be exceeded, particularly during on-site mixing of paints, spray-painting, foaming and maintenance of machine and ventilation systems. In these situations, air-line respirators or self-contained breathing apparatus complying with the appropriate nationals standard must be used.
- Organic vapour respirators with particulate pre- filters and powered, air-purifying respirators are NOT suitable.
- Personal protective equipment must be appropriately selected, individually fitted and workers trained in their correct use and maintenance. Personal protective equipment must be regularly checked and maintained to ensure that the worker is being protected.
- Air- line respirators or self-contained breathing apparatus complying with the appropriate national standard should be used during the clean-up of spills and the repair or clean-up of contaminated equipment and similar situations which cause emergency exposures to hazardous atmospheric concentrations of isocyanate.

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

| Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face<br>Respirator | Full-Face<br>Respirator |
|------------------------------------|--------------------------------------------------------------------|-------------------------|-------------------------|
| up to 10                           | 1000                                                               | AX-AUS /<br>Class 1     | -                       |
| up to 50                           | 1000                                                               | -                       | AX-AUS /<br>Class 1     |
| up to 50                           | 5000                                                               | Airline *               | -                       |
| up to 100                          | 5000                                                               | -                       | AX-2                    |
| up to 100                          | 10000                                                              | -                       | AX-3                    |
| 100+                               |                                                                    | -                       | Airline**               |

\*\* - Continuous-flow or positive pressure demand.

A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C)

Chemwatch: 5689-14 Page 10 of 17 Version No: 2.1

**ACTFLEX SUPERBOND 007** 

Issue Date: 11/07/2024 Print Date: 23/07/2024

#### **SECTION 9 Physical and chemical properties**

#### Information on basic physical and chemical properties

| Appearance                                   | Transparent highly flammable liquid; does not mix well with water. |                                         |                |
|----------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|----------------|
| Physical state                               | Liquid                                                             | Relative density (Water = 1)            | Not Available  |
| Odour                                        | Not Available                                                      | Partition coefficient n-octanol / water | Not Available  |
| Odour threshold                              | Not Available                                                      | Auto-ignition temperature (°C)          | Not Available  |
| pH (as supplied)                             | Not Applicable                                                     | Decomposition temperature (°C)          | Not Available  |
| Melting point / freezing point (°C)          | Not Available                                                      | Viscosity (cSt)                         | Not Available  |
| Initial boiling point and boiling range (°C) | >35                                                                | Molecular weight (g/mol)                | Not Applicable |
| Flash point (°C)                             | 0 (CC)                                                             | Taste                                   | Not Available  |
| Evaporation rate                             | Not Available                                                      | Explosive properties                    | Not Available  |
| Flammability                                 | HIGHLY FLAMMABLE.                                                  | Oxidising properties                    | Not Available  |
| Upper Explosive Limit (%)                    | Not Available                                                      | Surface Tension (dyn/cm or mN/m)        | Not Available  |
| Lower Explosive Limit (%)                    | Not Available                                                      | Volatile Component (%vol)               | Not Available  |
| Vapour pressure (kPa)                        | Not Available                                                      | Gas group                               | Not Available  |
| Solubility in water                          | Immiscible                                                         | pH as a solution (1%)                   | Not Available  |
| Vapour density (Air = 1)                     | Not Available                                                      | VOC g/L                                 | Not Available  |

#### **SECTION 10 Stability and reactivity**

| Reactivity                         | See section 7                                                                                                                                                    |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical stability                 | <ul> <li>Unstable in the presence of incompatible materials.</li> <li>Product is considered stable.</li> <li>Hazardous polymerisation will not occur.</li> </ul> |
| Possibility of hazardous reactions | See section 7                                                                                                                                                    |
| Conditions to avoid                | See section 7                                                                                                                                                    |
| Incompatible materials             | See section 7                                                                                                                                                    |
| Hazardous decomposition products   | See section 5                                                                                                                                                    |

# **SECTION 11 Toxicological information**

Inhaled

Ingestion

#### Information on toxicological effects

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

The main effects of simple aliphatic esters are narcosis and irritation and anaesthesia at higher concentrations. These effects become greater as the molecular weights and boiling points increase. Central nervous system depression , headache, drowsiness, dizziness, coma and neurobehavioral changes may also be symptomatic of overexposure. Respiratory tract involvement may produce mucous membrane irritation, dyspnea, and tachypnea, pharyngitis, bronchitis, pneumonitis and, in massive exposures, pulmonary oedema (which may be delayed). Gastrointestinal effects include nausea, vomiting, diarrhoea and abdominal cramps. Liver and kidney damage may result from

Mild eye, nose and throat irritation occurs at 400 ppm ethyl acetate with unacclimated persons. Production workers with regular exposure may intermittently tolerate 1500 ppm for periods up to 3 months without adverse symptoms.

Inhalation hazard is increased at higher temperatures.

The vapour/mist may be highly irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning for several hours after exposure. Sensitized people can react to very low doses, and should not be allowed to work in situations allowing exposure to this material. Continued exposure of sensitised persons may lead to possible long term respiratory impairment.

Inhalation hazard is increased at higher temperatures.

The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis).

Accidental ingestion of the material may be damaging to the health of the individual.

Acute intoxication by ethyl acetate causes impaired coordination, exhilaration, slurred speech, vertigo, flushed face, nausea, vomiting, and may progress to stupor, coma and death may result from respiratory or circulation failure

Skin Contact Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

#### Continued...

Chemwatch: 5689-14 Page 11 of 17 Issue Date: 11/07/2024 Version No: 2.1 Print Date: 23/07/2024

#### **ACTFLEX SUPERBOND 007**

Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

# Eye

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Corneal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated.

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a substantial number of individuals at a greater frequency than would be expected from the response of a normal population.

Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking.

Harmful: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year)

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocyanates

The chemistry of reaction of isocyanates, as evidenced by MDI, in biological milieu is such that in the event of a true exposure of small MDI doses to the mouth, reactions will commence at once with biological macromolecules in the buccal region and will continue along the digestive tract prior to reaching the stomach. Reaction products will be a variety of polyureas and macromolecular conjugates with for example mucus, proteins and cell components.

#### Chronic

This is corroborated by the results from an MDI inhalation study. Following an inhalation exposure of rats to radiolabelled MDI, 79% of the dose was excreted in faeces. The faecal excretion in these animals was considered entirely due to ingestion of radioactivity from grooming and ingestion of deposited material from the nasopharangeal region via the mucociliary escalator, i.e. not following systemic absorption. The faecal radioactivity was tentatively identified as mixed molecular weight polyureas derived from MDI. Diamine was not present. Thus, for MDI and diisocyanates in general the oral gavage dosing route is inappropriate for toxicological studies and risk assessment. It is expected that oral gavage dosing will result in a similar outcome to that produced by TDI or MDI, that is (1) reaction with stomach contents and (2) polymerization to solid polyureas.

- ▶ Reaction with stomach contents is very plausibly described in case reports of accidental ingestion of polymeric MDI based glue in domestic animals. Extensive polymerization and CO2 liberation resulting in an expansion of the gastric content is described in the stomach, without apparent acute chemical toxicity
- Polyurea formation in organic and aqueous phases has been described. In this generally accepted chemistry of hydrolysis of an isocyanate the initially produced carbamate decarboxylates to an amine which. The amine, as a reactive intermediate, then reacts very readily with the present isocyanate to produce a solid and inert polyurea. This urea formation acts as a pH buffer in the stomach, thus promoting transformation of the diisocyanate into polyurea, even under the acidic conditions.

At the resorbtive tissues in the small intestine, these high molecular reaction products are likely to be of very low bioavailability, which is substantiated by the absence of systemic toxicity in acute oral bioassays with rats at the OECD limit dose (LC50>2 g/kg bw). The respiratory tract may be regarded as the main entry for systemically available isocyanates as evidenced following MDI exposures A detailed summary on urinary, plasma and in vitro metabolite studies is provided below. Taken together, all available studies provide

- convincing evidence that MDI-protein adduct and MDI-metabolite formation proceeds:

   via formation of a labile isocyanate glutathione (GSH)-adduct,
- then transfer to a more stable adduct with larger proteins, and
- without formation of free MDA. MDA reported as a metabolite is actually formed by analytical workup procedures (strong acid or base hydrolysis) and is not an identified metabolite in urine or blood

| A OTEL EV QUIDEDDOND OOT                      | TOXICITY                                           | IRRITATION                                                       |
|-----------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|
| ACTFLEX SUPERBOND 007                         | Not Available                                      | Not Available                                                    |
|                                               | TOXICITY                                           | IRRITATION                                                       |
|                                               | Dermal (rabbit) LD50: >18000 mg/kg <sup>[2]</sup>  | Eye (human): 400 ppm                                             |
| ethyl acetate                                 | Inhalation (Mouse) LC50: >18 mg/l4h <sup>[1]</sup> | Eye: no adverse effect observed (not irritating) <sup>[1]</sup>  |
|                                               | Oral (Mouse) LD50; 4100 mg/kg <sup>[2]</sup>       | Skin: no adverse effect observed (not irritating) <sup>[1]</sup> |
|                                               | TOXICITY                                           | IRRITATION                                                       |
|                                               | Dermal (rabbit) LD50: 3200 mg/kg <sup>[2]</sup>    | Eye ( human): 300 mg * [PPG]                                     |
|                                               | Inhalation (Rat) LC50: 0.74 mg/l4h <sup>[2]</sup>  | Eye (rabbit): 20 mg (open)-SEVERE                                |
| n-butyl acetate                               | Oral (Rabbit) LD50; 3200 mg/kg <sup>[2]</sup>      | Eye (rabbit): 20 mg/24h - moderate                               |
|                                               |                                                    | Eye: no adverse effect observed (not irritating) <sup>[1]</sup>  |
|                                               |                                                    | Skin (rabbit): 500 mg/24h-moderate                               |
|                                               |                                                    | Skin: no adverse effect observed (not irritating) <sup>[1]</sup> |
|                                               | TOXICITY                                           | IRRITATION                                                       |
| propylene glycol<br>monomethyl ether acetate, | dermal (rat) LD50: >2000 mg/kg <sup>[1]</sup>      | Eye: no adverse effect observed (not irritating) <sup>[1]</sup>  |
| alpha-isomer                                  | Oral (Rat) LD50: 3739 mg/kg <sup>[2]</sup>         | Skin: no adverse effect observed (not irritating) <sup>[1]</sup> |

Chemwatch: 5689-14 Page 12 of 17 Issue Date: 11/07/2024 Version No: 2.1 Print Date: 23/07/2024

#### **ACTFLEX SUPERBOND 007**

|                                              | TOXICITY                                                     | IRRITATION                                                                  |
|----------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|
|                                              | dermal (rat) LD50: >2000 mg/kg <sup>[1]</sup>                | Not Available                                                               |
| o-toluenesulfonyl isocyanate                 | Inhalation (Rat) LC50: >320 ppm4h <sup>[2]</sup>             |                                                                             |
|                                              | Oral (Rat) LD50: 2600 mg/kg <sup>[2]</sup>                   |                                                                             |
|                                              |                                                              |                                                                             |
|                                              | TOXICITY                                                     | IRRITATION                                                                  |
| 4-isocyanatophenol<br>phosphorothioate (3:1) | TOXICITY  Inhalation (Rat) LC50: 5.721 mg/L4h <sup>[1]</sup> | IRRITATION  Eye: no adverse effect observed (not irritating) <sup>[1]</sup> |

specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

#### N-BUTYL ACETATE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

A BASF report (in ECETOC ) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] \*Shin-Etsu SDS

for propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM).

Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids.

Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects)

This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product.

Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body.

As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faeces.

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER

As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5,000 mg/m3 for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 was >651 ppm (>3,412 mg/m3), representing the highest practically attainable vapor level. No deaths occurred at these concentrations. PnB and TPM are moderately irritating to eyes while the remaining category members are only slightly irritating to nonirritating. PnB is moderately irritating to skin while the remaining category members are slightly to non-irritating None are skin sensitisers.

In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB – 13 wk) and 450 mg/kg-d (DPnB – 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d (highest dose tested).

Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM, increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m3 (600 ppm) for PnB and 2,010 mg/m3 (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m3 (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m3 (120 ppm), also caused increased liver weights without accompanying histopathology. Although no repeated-dose studies are available for the oral route for TPM, or for any route for DPMA, it is anticipated that these chemicals would behave similarly to other category members. One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m3) with decreases in body and organ weights occurring at the LOAEL of 1000 ppm (3686 mg/m3). For offspring toxicity the NOAEL is 1000 ppm (3686 mg/m3), with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL for parental and offspring toxicity is 1000 mg/kg/d. in a two generation gavage study in rats. No adverse effects were found on reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health.

In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant exposure levels and show no frank developmental effects. Due to the rapid hydrolysis of DPMA to DPM, DPMA would not be expected to show teratogenic effects. At high doses where maternal toxicity occurs (e.g., significant body weight loss), an increased incidence of some anomalies such as delayed skeletal ossification or increased 13th ribs, have been reported. Commercially available PGEs showed no teratogenicity

The weight of the evidence indicates that propylene glycol ethers are not likely to be genotoxic. *In vitro*, negative results have been seen in a number of assays for PnB, DPnB, DPnB and TPM. Positive results were only seen in 3 out of 5 chromosome aberration assays in mammalian cells with DPnB. However, negative results were seen in a mouse micronucleus assay with DPnB and PM. Thus, there is no evidence to suggest these PGEs would be genotoxic in vivo. In a 2-year bioassay on PM, there were no statistically significant increases in tumors in rats and mice

#### P-TOLUENESULFONYL **ISOCYANATE**

for p-toluenesulfonyl isocyanate

The acute oral toxicity (LD50) of PTSI is 2600 mg/kg. Based on the rapid hydrolysis of PTSI to PTSA (and carbon dioxide), repeated dose, reproductive, and developmental toxicity, as well as genotoxicity are best described by PTSA.

Continued...

Chemwatch: **5689-14** Page **13** of **17** 

#### **ACTFLEX SUPERBOND 007**

Issue Date: 11/07/2024
Print Date: 23/07/2024

for p-toluenesulfonamide (PTSA):

PTSA was studied for oral toxicity in rats in a single dose toxicity test at doses of 889, 1333, 2000 and 3000 mg/kg in females and 2000 mg/kg in males, and in an OECD combined repeat dose and reproductive/developmental toxicity screening test at doses of 0, 120, 300 and 750 mg/kg/day in both sexes .PTSA was also tested for mutagenicity with assays for reverse mutation in bacteria and chromosomal aberrations in cultured Chinese hamster (CHL) cells. The single dose toxicity test revealed LD50 values of above 2000 mg/kg for both sexes. For repeat dose toxicity caused, daily administration of 300 mg/kg or more in males and females displayed an increase in salivation and a reduction in body weight gain, as well as a suppression of food consumption. No compound-related deaths were observed. Haematuria was observed within 3 days administration of 750 mg/kg in 4/13 males. Hematological examination and blood chemistry measurements in males showed a decrease in white blood cell count with an increase in lymphocyte count, increases in blood urea nitrogen and chloride, and slight elevation in GOT in medium and high dose groups and a decrease in potassium concentration, and increased GPT levels in the high dose group. Histopathological examination showed cytoplasmic changes in the epithelium of the urinary bladder in both sexes and an accelerated involution in the thymus especially in females. Signs of toxicity, such as salivation and urinary bladder changes, were observed in animals given 120 mg/kg and above. The NOEL for repeat dose toxicity was less than 120 mg/kg/day. For reproductive/developmental toxicity, females given 750 mg/kg/day demonstrated possible delivery or lactation state dysfunction and developmental suppression of embryos. NOELs for reproductive performance and offspring development were both 300 mg/kg/day. No teratogenic effects were observed. The mutagenicity tests performed were all negative. PTSA was not mutagenic for bacteria either with or without an exogenous metabolic activation system up to 5000 ug/plate. No chromosomal aberrations or polyploidy were induced in CHL cells up to 1.7 mg/ml with metabolic activation and 1.3 mg/ml without metabolic activation.

#### 4-ISOCYANATOPHENOL PHOSPHOROTHIOATE (3:1)

Version No: 2.1

No significant acute toxicological data identified in literature search.

#### ETHYL ACETATE & P-TOLUENESULFONYL ISOCYANATE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

# N-BUTYL ACETATE & PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER

Generally, linear and branched-chain alkyl esters are hydrolysed to their component alcohols and carboxylic acids in the intestinal tract, blood and most tissues throughout the body. Following hydrolysis the component alcohols and carboxylic acids are metabolized Oral acute toxicity studies have been reported for 51 of the 67 esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids. The very low oral acute toxicity of this group of esters is demonstrated by oral LD50 values greater than 1850 mg/kg bw Genotoxicity studies have been performed in vitro using the following esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids: methyl acetate, butyl acetate, butyl stearate and the structurally related isoamyl formate and demonstrates that these substances are not genotoxic.

The JEFCA Committee concluded that the substances in this group would not present safety concerns at the current levels of intake the esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids are generally used as flavouring substances up to average maximum levels of 200 mg/kg. Higher levels of use (up to 3000 mg/kg) are permitted in food categories such as chewing gum and hard candy. In Europe the upper use levels for these flavouring substances are generally 1 to 30 mg/kg foods and in special food categories like candy and alcoholic beverages up to 300 mg/kg foods

Internation Program on Chemical Safety: the Joint FAO/WHO Expert Committee on Food Additives (JECFA) Esters of Aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids.; 1998

#### P-TOLUENESULFONYL ISOCYANATE & 4-ISOCYANATOPHENOL PHOSPHOROTHIOATE (3:1)

Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens).

Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis.

Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.

Isocyanate vapours/mists are irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis with wheezing, gasping and severe distress, even sudden loss of consciousness, and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning after a period of tolerance. A respiratory response may occur following minor skin contact. Skin sensitisation is possible and may result in allergic dermatitis responses including rash, itching, hives and swelling of extremities.

Isocyanate-containing vapours/ mists may cause inflammation of eyes and nasal passages.

Onset of symptoms may be immediate or delayed for several hours after exposure. Sensitised people can react to very low levels of airborne isocyanates. Unprotected or sensitised persons should not be allowed to work in situations allowing exposure to this material.

| Acute Toxicity                    | ×        | Carcinogenicity          | ×        |
|-----------------------------------|----------|--------------------------|----------|
| Skin Irritation/Corrosion         | ×        | Reproductivity           | ×        |
| Serious Eye<br>Damage/Irritation  | <b>~</b> | STOT - Single Exposure   | <b>~</b> |
| Respiratory or Skin sensitisation | <b>~</b> | STOT - Repeated Exposure | <b>~</b> |
| Mutagenicity                      | ×        | Aspiration Hazard        | ✓        |

Legend:

🗶 – Data either not available or does not fill the criteria for classification

— Data available to make classification

#### **SECTION 12 Ecological information**

## Toxicity

|                       | Endpoint         | Test Duration (hr) | Species                       | Value             | Source           |
|-----------------------|------------------|--------------------|-------------------------------|-------------------|------------------|
| ACTFLEX SUPERBOND 007 | Not<br>Available | Not Available      | Not Available                 | Not<br>Available  | Not<br>Available |
| ethyl acetate         | Endpoint         | Test Duration (hr) | Species                       | Value             | Source           |
|                       | EC50             | 72h                | Algae or other aquatic plants | 1800-<br>3200mg/L | 4                |

Chemwatch: 5689-14 Version No: 2.1

**ACTFLEX SUPERBOND 007** 

Page **14** of **17** Issue Date: 11/07/2024 Print Date: 23/07/2024

|                              | EC50      | 48h                | Crustacea                                                                                                  | 164mg/l         | 1      |
|------------------------------|-----------|--------------------|------------------------------------------------------------------------------------------------------------|-----------------|--------|
|                              | LC50      | 96h                | Fish                                                                                                       | >75.6mg/l       | 2      |
|                              | NOEC(ECx) | 72h                | Algae or other aquatic plants                                                                              | >100mg/l        | 1      |
|                              | EC50      | 96h                | Algae or other aquatic plants                                                                              | 2500mg/L        | 4      |
|                              | Endpoint  | Test Duration (hr) | Species                                                                                                    | Value           | Source |
|                              | EC50      | 72h                | Algae or other aquatic plants                                                                              | 246mg/l         | 2      |
| n-butyl acetate              | EC50      | 48h                | Crustacea                                                                                                  | 32mg/l          | 1      |
| II-butyi acetate             | EC50(ECx) | 96h                | Fish                                                                                                       | 18mg/l          | 2      |
|                              | LC50      | 96h                | Fish                                                                                                       | 17-<br>19mg/L   | 4      |
| propylene glycol             | Endpoint  | Test Duration (hr) | Species                                                                                                    | Value           | Source |
|                              | EC50      | 72h                | Algae or other aquatic plants                                                                              | >1000mg/l       | 2      |
|                              | NOEC(ECx) | 336h               | Fish                                                                                                       | 47.5mg/l        | 2      |
| monomethyl ether acetate,    | EC50      | 48h                | Crustacea                                                                                                  | 373mg/l         | 2      |
| alpha-isomer                 | LC50      | 96h                | Fish                                                                                                       | 100-<br>180mg/l | 2      |
|                              | EC50      | 96h                | Algae or other aquatic plants                                                                              | >1000mg/l       | 2      |
|                              | Endpoint  | Test Duration (hr) | Species                                                                                                    | Value           | Source |
|                              | EC50      | 72h                | Algae or other aquatic plants                                                                              | 25mg/l          | 2      |
| o-toluenesulfonyl isocyanate | EC50      | 48h                | Crustacea                                                                                                  | >100mg/l        | 2      |
|                              | LC50      | 96h                | Fish                                                                                                       | >45mg/l         | 2      |
|                              | NOEC(ECx) | 72h                | Algae or other aquatic plants                                                                              | 10mg/l          | 2      |
|                              | Endpoint  | Test Duration (hr) | Species                                                                                                    | Value           | Source |
| 4-isocyanatophenol           | EC50      | 72h                | Algae or other aquatic plants                                                                              | >100mg/l        | 2      |
| phosphorothioate (3:1)       | LC50      | 96h                | Fish                                                                                                       | >100mg/l        | 2      |
|                              | NOEC(ECx) | 48h                | Crustacea                                                                                                  | 100mg/l         | 2      |
| Legend:                      |           |                    | CHA Registered Substances - Ecotoxicological Informa<br>Aquatic Hazard Assessment Data 6. NITE (Japan) - E |                 |        |

# DO NOT discharge into sewer or waterways.

# Persistence and degradability

| i croiotorioc ana aogradability                         |                           |                              |
|---------------------------------------------------------|---------------------------|------------------------------|
| Ingredient                                              | Persistence: Water/Soil   | Persistence: Air             |
| ethyl acetate                                           | LOW (Half-life = 14 days) | LOW (Half-life = 14.71 days) |
| n-butyl acetate                                         | LOW                       | LOW                          |
| propylene glycol monomethyl ether acetate, alpha-isomer | LOW                       | LOW                          |
| p-toluenesulfonyl isocyanate                            | HIGH                      | HIGH                         |

# Bioaccumulative potential

| •                                                       |                       |
|---------------------------------------------------------|-----------------------|
| Ingredient                                              | Bioaccumulation       |
| ethyl acetate                                           | HIGH (BCF = 3300)     |
| n-butyl acetate                                         | LOW (BCF = 14)        |
| propylene glycol monomethyl ether acetate, alpha-isomer | LOW (LogKOW = 0.56)   |
| p-toluenesulfonyl isocyanate                            | LOW (LogKOW = 2.3424) |

# Mobility in soil

| Ingredient                                              | Mobility               |
|---------------------------------------------------------|------------------------|
| ethyl acetate                                           | LOW (Log KOC = 6.131)  |
| n-butyl acetate                                         | LOW (Log KOC = 20.86)  |
| propylene glycol monomethyl ether acetate, alpha-isomer | HIGH (Log KOC = 1.838) |
| p-toluenesulfonyl isocyanate                            | LOW (Log KOC = 882.1)  |

# **SECTION 13 Disposal considerations**

## Waste treatment methods

# Product / Packaging disposal

- ▶ Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

# Otherwise:

If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.

 Chemwatch: 5689-14
 Page 15 of 17
 Issue Date: 11/07/2024

 Version No: 2.1
 Print Date: 23/07/2024

ACTFLEX SUPERBOND 007 Print Date: 23/07/2024

▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- ▶ Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

#### **SECTION 14 Transport information**

#### Labels Required



| Marine Pollutant | NO   |
|------------------|------|
| HAZCHEM          | •3YE |

# Land transport (ADG)

| 14.1. UN number or ID number       | 1993                                |                                                     |
|------------------------------------|-------------------------------------|-----------------------------------------------------|
| 14.2. UN proper shipping name      | FLAMMABLE LIQUID,                   | N.O.S. (contains n-butyl acetate and ethyl acetate) |
| 14.3. Transport hazard class(es)   | Class Subsidiary Hazard             | 3 Not Applicable                                    |
| 14.4. Packing group                | II                                  |                                                     |
| 14.5. Environmental hazard         | Not Applicable                      |                                                     |
| 14.6. Special precautions for user | Special provisions Limited quantity | 274<br>1 L                                          |

# Air transport (ICAO-IATA / DGR)

| 14.1. UN number                    | 1993                                 |                              |        |
|------------------------------------|--------------------------------------|------------------------------|--------|
| 14.2. UN proper shipping name      | Flammable liquid, n.o.s. * (contains | n-butyl acetate and ethyl ac | etate) |
|                                    | ICAO/IATA Class                      | 3                            |        |
| 14.3. Transport hazard class(es)   | ICAO / IATA Subsidiary Hazard        | Not Applicable               |        |
| ciass(es)                          | ERG Code                             | 3H                           |        |
| 14.4. Packing group                | II                                   |                              |        |
| 14.5. Environmental hazard         | Not Applicable                       |                              |        |
|                                    | Special provisions                   |                              | А3     |
|                                    | Cargo Only Packing Instructions      |                              | 364    |
|                                    | Cargo Only Maximum Qty / Pack        |                              | 60 L   |
| 14.6. Special precautions for user | Passenger and Cargo Packing In       | structions                   | 353    |
| 4001                               | Passenger and Cargo Maximum          | Qty / Pack                   | 5 L    |
|                                    | Passenger and Cargo Limited Qu       | antity Packing Instructions  | Y341   |
|                                    | Passenger and Cargo Limited Ma       | aximum Qty / Pack            | 1 L    |

#### Sea transport (IMDG-Code / GGVSee)

| 14.1. UN number                  | 1993                                                                  |
|----------------------------------|-----------------------------------------------------------------------|
| 14.2. UN proper shipping name    | FLAMMABLE LIQUID, N.O.S. (contains n-butyl acetate and ethyl acetate) |
| 14.3. Transport hazard class(es) | IMDG Class 3                                                          |

Chemwatch: 5689-14 Page 16 of 17 Issue Date: 11/07/2024 Version No: 2.1 Print Date: 23/07/2024

#### **ACTFLEX SUPERBOND 007**

|                                    | IMDG Subsidiary Ha                               | azard Not Applicable    |
|------------------------------------|--------------------------------------------------|-------------------------|
| 14.4. Packing group                | II                                               |                         |
| 14.5 Environmental hazard          | Not Applicable                                   |                         |
| 14.6. Special precautions for user | EMS Number Special provisions Limited Quantities | F-E , S-E<br>274<br>1 L |

## 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

#### 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

| Product name                                            | Group         |
|---------------------------------------------------------|---------------|
| ethyl acetate                                           | Not Available |
| n-butyl acetate                                         | Not Available |
| propylene glycol monomethyl ether acetate, alpha-isomer | Not Available |
| p-toluenesulfonyl isocyanate                            | Not Available |
| 4-isocyanatophenol phosphorothioate (3:1)               | Not Available |

#### 14.7.3. Transport in bulk in accordance with the IGC Code

| Product name                                            | Ship Type     |
|---------------------------------------------------------|---------------|
| ethyl acetate                                           | Not Available |
| n-butyl acetate                                         | Not Available |
| propylene glycol monomethyl ether acetate, alpha-isomer | Not Available |
| p-toluenesulfonyl isocyanate                            | Not Available |
| 4-isocyanatophenol phosphorothioate (3:1)               | Not Available |

## **SECTION 15 Regulatory information**

#### Safety, health and environmental regulations / legislation specific for the substance or mixture

#### ethyl acetate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

# n-butyl acetate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

# propylene glycol monomethyl ether acetate, alpha-isomer is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

# p-toluenesulfonyl isocyanate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

# 4-isocyanatophenol phosphorothioate (3:1) is found on the following regulatory lists

Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

#### **Additional Regulatory Information**

Not Applicable

# National Inventory Status

| vational inventory Status                           |                                                                                                                                                                       |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| National Inventory                                  | Status                                                                                                                                                                |
| Australia - AIIC / Australia Non-<br>Industrial Use | Yes                                                                                                                                                                   |
| Canada - DSL                                        | Yes                                                                                                                                                                   |
| Canada - NDSL                                       | No (ethyl acetate; n-butyl acetate; propylene glycol monomethyl ether acetate, alpha-isomer; p-toluenesulfonyl isocyanate; 4-isocyanatophenol phosphorothioate (3:1)) |
| China - IECSC                                       | Yes                                                                                                                                                                   |
| Europe - EINEC / ELINCS /<br>NLP                    | Yes                                                                                                                                                                   |
| Japan - ENCS                                        | Yes                                                                                                                                                                   |

#### **ACTFLEX SUPERBOND 007**

Issue Date: 11/07/2024 Print Date: 23/07/2024

| National Inventory  | Status                                                                                                                                                                                         |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Korea - KECI        | Yes                                                                                                                                                                                            |
| New Zealand - NZIoC | Yes                                                                                                                                                                                            |
| Philippines - PICCS | Yes                                                                                                                                                                                            |
| USA - TSCA          | Yes                                                                                                                                                                                            |
| Taiwan - TCSI       | Yes                                                                                                                                                                                            |
| Mexico - INSQ       | No (p-toluenesulfonyl isocyanate; 4-isocyanatophenol phosphorothioate (3:1))                                                                                                                   |
| Vietnam - NCI       | Yes                                                                                                                                                                                            |
| Russia - FBEPH      | No (4-isocyanatophenol phosphorothioate (3:1))                                                                                                                                                 |
| Legend:             | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. |

#### **SECTION 16 Other information**

| Revision Date | 11/07/2024 |
|---------------|------------|
| Initial Date  | 11/07/2024 |

#### Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

#### **Definitions and abbreviations**

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- ► IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- ▶ STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit。
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard
- OSF: Odour Safety Factor
- NOAEL: No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- ► TLV: Threshold Limit Value
- LOD: Limit Of Detection
- ▶ OTV: Odour Threshold Value
- BCF: BioConcentration Factors ▶ BEI: Biological Exposure Index
- DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- ▶ AIIC: Australian Inventory of Industrial Chemicals
- DSL: Domestic Substances List
- NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- ▶ EINECS: European INventory of Existing Commercial chemical Substances
- ▶ ELINCS: European List of Notified Chemical Substances
- NLP: No-Longer Polymers
   ENCS: Existing and New Chemical Substances Inventory
- KECI: Korea Existing Chemicals Inventory
- ▶ NZIoC: New Zealand Inventory of Chemicals
- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ▶ TSCA: Toxic Substances Control Act
- TCSI: Taiwan Chemical Substance Inventory
- INSQ: Inventario Nacional de Sustancias Químicas
- NCI: National Chemical Inventory
- ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

#### This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.